

EMC TEST REPORT

Report ID

REP066025

Applicant:

Nanoptix Inc.

Model:

100769 / 950023

Specification:

EN 55035:2017/A11:2020

CISPR 35:2016

Date of issue: November 15, 2024

Project ID

PRJ0066902

Product:

Spill-Proof Printer

Model variant(s):

103665/950005

Daniel Hynes, Senior EMC Specialist

Tested by

Dhara Patel, EMC/RF Specialist

Tested by

David Duchesne, EMC/RF Lab Manager

Reviewed by

Signature

Lab and test locations

Company name	Nemko Canada Inc.		
Facilities	Ottawa site:	Montréal site:	Cambridge site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario
	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E OB2
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811
	Fax: +1 613 737 9691	Fax: +1 514 694 3528	
Test site registration	- CA2040 (Ottawa)		
number:	- CA2041 (Montreal)		
	CA0101 (Cambridge)		
Website	www.nemko.com		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Report reference ID: REP066025 Page 2 of 36

Table of Contents

Table of C	Contents	
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Model variant declaration	5
2.4	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Power supply range	6
Section 4	Information provided by the applicant	7
4.1	Disclaimer	7
4.2	Applicant/Manufacturer	7
4.3	EUT information	7
4.4	EUT setup details	8
Section 5	Summary of test results	10
5.1	Testing period	10
5.2	Sample information	10
5.3	Test results	10
Section 6	Terms and definitions	. 11
6.1	Performance terms and definitions	11
6.2	General definitions	12
Section 7	Testing data	. 14
7.1	ESD.	14
7.2	Continuous RF electromagnetic field disturbances	17
7.3	Electrical fast transients/burst	22
7.4	Surges	25
7.5	Continuous induced RF disturbances	28
7.6	Voltage dips and voltage interruptions	31
Section 8	EUT photos	33
8.1	External photos	33

Section 1 Report summary

1.1 Test specifications

EN 55035:2017/A11:2020	Electromagnetic compatibility of multimedia equipment
	Immunity requirements
CISPR 35:2016	Electromagnetic compatibility of multimedia equipment
	Immunity requirements

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Unless noted in section 1.2, all testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Report ID.	Date of issue	Details of changes made to test report	
275244-2TRFEMC	January 13, 2015	Original report issued	
REP066025	November 15, 2024	New report issued to latest versions of standard including new delta testing	

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

The following modifications were performed by client in order to comply with radiated emissions requirements (Internal part numbers in parenthesis.):

Removed:

- 1. **R313, R314, R315**: OR, 0402 (240008-0000R)
- 2. **C310B**: 100uF, 35V (230011-1008R)

Added:

- 3. **C465**: 0.1uF, 0603 (230001-1005R)
- C457, C458, C459, C802: 0.1uF, 0402 (230015-1005R)
- 5. C462, C463, C464: 10uF, 1206 (230013-1007R)
- 6. C700, C750, C800, C851: 10uF, 0805 (230010-1007R)
- 7. **Z300**: 5V TVS, SP0505BAHTG (242012-5000R)
- 8. L300, L301, L302: Ferrite beads BLM15AG102SN1D (237002-1003R)
- 9. **C310A**: 220uF, 35V (100579-2023R)

There were no wire mods. The components added already had a footprint on the PCB so they will be added to the released BOM for this printer's main hoard.

These modifications were present during all testing.

2.2 Technical judgment

The new report has been updated to align with the latest versions of the standard. Data from the original assessment was utilized, and any delta test results included.

2.3 Model variant declaration

As declared by the applicant, the EUT model 100769/950023 (Spill-Proof printer) has been chosen to be representative for all other models in the model family. The model family, and the description of the variations, are as follows:

Model variant 103665/950005: Details: Same main board and the same print mechanism as the Spill-Proof printer. This printer has its main board enclosed into a metal shell and is assumed to be better shielded than the Spill-Proof printer. The PayCheck Slim printer is designed to fit inside a cabinet.

2.4 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

٧

Section 3 Test conditions

3.1 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Report reference ID: REP066025 Page 6 of 36

Information provided by the applicant Section 4

4.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

4.2 Applicant/Manufacturer

Applicant name	Nanoptix Inc.	
Applicant address	599 Champlain Street, Dieppe, NB, E1A 1P6, Canada	
Manufacturer name	Same as applicant	
Manufacturer address	Same as applicant	

4.3 **EUT** information

Product	Spill-Proof Printer		
Model	100769 / 950023		
Serial number	SP00001 [2015 assessment]	1041308 [2024 assessment]	
Part number	100769 / 950023		
Power requirements	100-240 V _{AC} , 50/60 Hz		
Description/theory of operation	Thermal printer. To insert the paper, open the top cover. Pass the paper between the top cover and the base and pull it up to the front. Close the cover. Power the printer. This printer is used to print receipts. It can receive print jobs from either USB full speed or RS-232.		
Operational frequencies	192 MHz internal to the processor 96 MHz between the processor and the memory chi	ps.	
Software details	Firmware version SPL-5.68A [2015 assessment]	Firmware version SPL-5.73A [2024 assessment]	

REP066025 Page 7 of 36 Report reference ID:

4.4 EUT setup details

4.4.1 EUT Exercise and monitoring [2015 assessment]

Methods used to exercise the EUT and all relevant ports:

The EUT was configured to operate continuously printing once every 5 seconds. Verification of the printer quality as well as continued printing
was used to assess any impact caused by immunity testing.

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use.
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice.

4.4.2 EUT Exercise and monitoring [2024 assessment]

Methods used to exercise the EUT and all relevant ports:

The EUT was configured to operate continuously printing once every 10 seconds. Verification of the printer quality as well as continued printing
was used to assess any impact caused by immunity testing.

Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use.
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice.

Monitoring details:

- The current counts observed in the printer status application were recorded alongside the total number of printed receipts

Report reference ID: REP066025 Page 8 of 36

4.4.3 EUT test configuration

Table 4.4-1: EUT sub-assemblies

Description	Brand name	Model/Part number	Serial number
Spill-Proof Printer [2015 assessment]	Nanoptix	950023/100769	SP00001
Spill-Proof Printer [2024 assessment]	Nanoptix	950023/100769	1041308

Table 4.4-2: EUT interface ports

Description	Qty.
Power Input	1
USB	1
Serial	1

Table 4.4-3: Support equipment

Description Brand name		Serial number, Part number, Model, Revision level	
Laptop Computer	Dell	Latitude D820	
ITE Power Supply	Nanoptix	GT-21126-6024 / GS-1110	

Table 4.4-4: Inter-connection cables

Cable description	From	То	Length (m)
2 Conductor DC Power Cable	EUT	AC/DC Power Adapter	2
DB9 to DB9 Null Cable (Female to Female)	EUT	Laptop Computer	7
Mini-B to Standard USB Cable	EUT	Laptop Computer	6

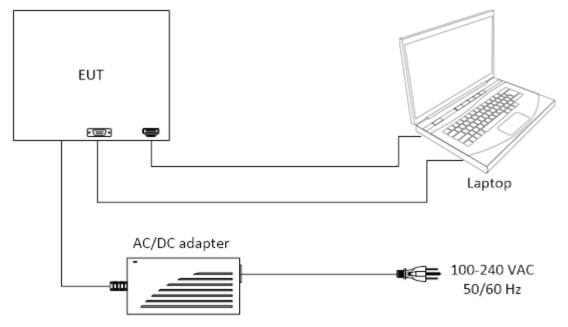


Figure 4.4-1: Block diagram

Report reference ID: REP066025 Page 9 of 36

Section 5 Summary of test results

5.1 Testing period

2015 assessment			
Test start date	December 19, 2014	Test end date	January 8, 2015
2024 assessment	-		
Test start date	October 10, 2024	Test end date	October 10, 2024

5.2 Sample information

2015 assessment			
Receipt date	December 5, 2014	Nemko sample ID number	Item # 11
2024 assessment			
Receipt date	October 10, 2024	Nemko sample ID number	PRJ00669020001

5.3 Test results

Table 5.3-1: Result summary

Test description	Verdict
Enclosure ports	
Power frequency magnetic field	Not applicable ¹
Continuous RF electromagnetic field disturbances, swept test	Pass
Continuous RF electromagnetic field disturbances, spot test	Pass
ESD	Pass
Analogue/digital data ports	
Continuous induced RF disturbances	Pass
Broadband impulse noise disturbances, repetitive	Not applicable ²
Broadband impulse noise disturbances, isolated	Not applicable ²
Surges	Not applicable ³
Electrical fast transients/burst	Pass
DC network power ports	
Continuous induced RF disturbances	Not applicable⁴
Surges	Not applicable ⁴
Electrical fast transients/burst	Not applicable ⁴
AC mains power ports	
Continuous induced RF disturbances	Pass
Voltage dips	Pass
Voltage interruptions	Pass
Surges	Pass
Electrical fast transients/burst	Pass

Notes:

- ¹ EUT does not contain devices intrinsically susceptible to magnetic fields, such as CRT monitors, Hall effect elements, electro-dynamic microphones, magnetic field sensors or audio frequency transformers.
- ² EUT does not contain CPE xDSL ports.
- $^{\rm 3}\,\text{EUT}$ does not contain ports which may connect directly to outdoor cables.
- $^4\,\mbox{EUT}$ does not contain DC power ports.

Section 6 Terms and definitions

6.1 Performance terms and definitions

General performance criteria,	General performance criteria are defined in 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary			
Reference Clause 8.1 of EN	functions where no relevant annex is applicable.			
55035:2017/A11:2020 and CISPR 35:2016	When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.			
Performance criterion A,	The equipment shall continue to operate as intended without operator intervention. No degradation of performance,			
Reference Clause 8.2 of EN	loss of function or change of operating state is allowed below a performance level specified by the manufacturer when			
55035:2017/A11:2020 and CISPR	the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the			
35:2016	minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of			
	these may be derived from the product description and documentation, and by what the user may reasonably expect			
	from the equipment if used as intended.			
Performance criterion B,	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of			
Reference Clause 8.3 of EN 55035:2017/A11:2020 and CISPR	actual operating state or stored data is allowed to persist after the test.			
35:2016	After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of			
	performance or loss of function is allowed, below a performance level specified by the manufacturer, when the			
	equipment is used as intended. The performance level may be replaced by a permissible loss of performance.			
	If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the			
	manufacturer, then either of these may be derived from the product description and documentation, and by what the			
	user may reasonably expect from the equipment if used as intended.			
Performance criterion C,	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the			
Reference Clause 8.4 of EN	controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.			
55035:2017/A11:2020 and CISPR 35:2016	Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.			

6.2 General definitions

6.2.1 EN 61000-4-2 (Electrostatic discharge)

Electrostatic discharge; ESD	A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact.		
Contact discharge method	A method of testing, in which the electrode of the test generator is held in contact with the EUT, and the discharge		
	actuated by the discharge switch within the generator.		
Air discharge method	A method of testing, in which the charged electrode of the test generator is brought close to the EUT, and the		
	discharge actuated by a spark to the EUT.		
Direct application	Application of the discharge directly to the EUT.		
Indirect application	Application of the discharge to a coupling plane in the vicinity of the EUT, and simulation of personnel discharge to		
	objects, which are adjacent to the EUT.		
Coupling plane	A metal sheet or plate, to which discharges are applied to simulate electrostatic discharge to objects adjacent to the		
	EUT. HCP: Horizontal Coupling Plane; VCP: Vertical Coupling Plane.		

6.2.2 EN 61000-4-3 (Radiated, radio-frequency, electromagnetic field)

Continuous waves (CW)	Electromagnetic waves, the successive oscillations of which are identical under steady-state conditions, which continued interrupted or modulated to convey information.				
Electromagnetic (EM) wave	Radiant energy produced by the oscillation of an electric charge characterized by oscillation of the electric and magnetic fields.				
Field strength	The term "field strength" is applied only to measurements made in the far field. The measurement may be of either the electric or the magnetic component of the field and may be expressed as V/m, A/m or W/m2; any one of these may be converted into the others.				
Sweep	Continuous or incremental traverse over a range of frequencies.				

6.2.3 EN 61000-4-4 (Electrical fast transient/burst)

Burst	Sequence of a limited number of distinct pulses or an oscillation of limited duration.			
Common mode (coupling)	Simultaneous coupling to all lines versus the ground reference plane.			
Ground reference plane	Flat conductive surface whose potential is used as a common reference.			
Coupling clamp	Device of defined dimensions and characteristics for common mode coupling of the disturbance signal to the circuit			
	under test without any galvanic connection to it.			
Transient Pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady st				
	time interval which is short compared with the time-scale of interest.			

Report reference ID: REP066025 Page 12 of 36

General definitions, continued

6.2.4 EN 61000-4-5 (Surge)

Surge	Transient wave of electrical current, voltage, or power propagating along a line or a circuit and characterized by a rap increase followed by a slower decrease.	
Ground (reference)	Part of the Earth considered as conductive, the electrical potential of which is conventionally taken as zero, being outside the zone of influence of any earthing (grounding) arrangement.	

6.2.5 EN 61000-4-6 (Immunity to conducted disturbances, induced by radio-frequency fields)

Clamp injection	Clamp injection is obtained by means of a clamp-on "current" injecting device on the cable.		
Coupling/decoupling network Electrical circuit incorporating the functions of both the coupling and decoupling networks. (CDN)			
Sweep	Continuous or incremental traverse over a range of frequencies.		

6.2.6 EN 61000-4-8 (Power frequency magnetic field)

Induction coil	Conductor loop of defined shape and dimensions, in which flows a current, generating a magnetic field of defined constancy in its plane and in the enclosed volume.		
Immersion method	Method of application of the magnetic field to the EUT, which is placed in the centre of an induction coil.		
Proximity method	Method of application of the magnetic field to the EUT, where a small induction coil is moved along the side of the EUT in order to detect particularly sensitive areas.		
Ground	A flat conductive surface whose potential is used as a common reference for the magnetic field generator and the auxiliary equipment (the ground plane can be used to close the loop of the induction coil.		

6.2.7 EN 61000-4-11 (Voltage dips, short interruptions and voltage variations)

Voltage dip	A sudden reduction of the voltage at a particular point of an electricity supply system below a specified dip threshold followed by its recovery after a brief interval.
Short interruption	A sudden reduction of the voltage on all phases at a particular point of an electric supply system below a specified interruption threshold followed by its restoration after a brief interval.

Report reference ID: REP066025 Page 13 of 36

Testing data ESD

EN 55035:2017/A11:2020 and CISPR 35:2016

Section 7 Testing data

7.1 ESD

7.1.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN 61000-4-2:2009
- IEC 61000-4-2:2008

Table 7.1-1: ESD specification

Test specification	Performance criterion		
±4 (Contact discharge), ±8 (Air discharge)	В		
Notes. Classical discharge shall be applied only a griden and suffers of the EUT which are consisted as he			

Notes:

Electrostatic discharges shall be applied only to points and surfaces of the EUT which are expected to be touched during normal operation, including user access operations specified in the user manual, for example cleaning or adding consumables when the EUT is powered. The application of discharges to the contacts of open connectors is not required.

7.1.2 Test summary

Verdict	Pass			
Test date	January 9, 2015	Temperature	24 °C	
Tested by	Daniel Hynes	Air pressure	1000 mbar	
Test location	Montreal	Relative humidity	35.6 %	

7.1.3 Notes

Elevated test levels performed in accordance with customer request.

7.1.4 Setup details

Table 7.1-2: ESD equipment list

Equipme	nt	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
ESD gun		Keytek	MZ-15/EC	FA001983	1 year	March 6/15
Notes:	None					

Table 7.1-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-2 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-2, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Report reference ID: REP066025 Page 14 of 36

Testing data

name ESD

EN 55035:2017/A11:2020 and CISPR 35:2016

7.1.5 Test data

Table 7.1-4: ESD results

EUT setup configuration	Table top
EUT power input during test	100-240 V _{AC} , 50/60 Hz
ESD repetition rate	1 pulse every 5 seconds
Discharges	25 contact discharges and 10 air discharges at each polarity

	25 contact district Ses and 10 an district Ses at each polarity			
Contact discharge		Test voltage (±kV)	Comments	
Screw on bottom of EYR		4	No degradation	
Rear Plate for interface connection	าร	4	No degradation	
Shield of DB9 connector		4	No degradation	
Shield of USB connector		4	No degradation	
Indirect discharge ^{1 and 2}		Test voltage (±kV)	Comments	
HCP (all sides)		4	No degradation	
VCP (all sides)		4	No degradation	
Air discharge		Test voltage (±kV)	Comments	
Dowersennester			At 1 1 1 1	
Power connector		2, 4, 8	No degradation	
USB connector		2, 4, 8 2, 4, 8	No degradation No degradation	
		• •	<u> </u>	
USB connector		2, 4, 8	No degradation	
USB connector DB9 connector		2, 4, 8 2, 4, 8	No degradation No degradation	
USB connector DB9 connector Paper roll cover		2, 4, 8 2, 4, 8 2, 4, 8	No degradation No degradation No degradation	
USB connector DB9 connector Paper roll cover Paper holder area		2, 4, 8 2, 4, 8 2, 4, 8 2, 4, 8	No degradation No degradation No degradation No degradation	

Notes:

Electrostatic discharges were applied only to those points and surfaces of the EUT which are expected to be touched during usual operation, including user access, as specified in the user manual, for example cleaning or adding consumables when the EUT is powered.

Report reference ID: REP066025 Page 15 of 36

¹For contact discharge, the requirement to apply ESD discharges at lower levels, as defined in Clause 5 of IEC 61000-4-2, is not applicable.

²The EUT was exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. For table-top equipment one of the test points was the centre front edge of the horizontal coupling plane, which was subjected to at least 50 indirect discharges (25 of each polarity). All other test points received at least 50 direct contact discharges (25 of each polarity). If no direct contact test points were available, then at least 200 indirect discharges were applied in the indirect mode.

EN 55035:2017/A11:2020 and CISPR 35:2016

7.1.6 Setup photos

Figure 7.1-1: ESD setup photo

Figure 7.1-2: ESD setup photo

Report reference ID: REP066025 Page 16 of 36

Testing data Continuous RF electromagnetic field disturbances EN 55035:2017/A11:2020 and CISPR 35:2016

7.2 Continuous RF electromagnetic field disturbances

7.2.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN/IEC 61000-4-3:2006 + A1:2008 + A2:2010

 Table 7.2-1: Continuous RF electromagnetic field disturbances, specification

Test specification	Performance criterion
Swept test	
80–1000 MHz, 3 V/m (unmodulated), 80 % AM (1 kHz)	A
Spot test	
1800, 2600, 3500, 5000 MHz, 3 V/m (unmodulated), 80 % AM (1 kHz)	A
1800, 2000, 3500, 5000 ivinz, 3 v/iii (unimodulated), 80 % Aivi (1 km2)	A

Notes: None

7.2.2 Test summary

2015 assessment

Verdict	Pass	Pass		
Test date	January 6, 2015	Temperature	24.3 °C	
Tested by	Daniel Hynes	Air pressure	1016 mbar	
Test location	Montreal	Relative humidity	37.5 %	

2024 assessment

Verdict	rdict Pass		
Test date	October 10, 2024	Temperature	22.5 °C
Tested by	Dhara Patel	Air pressure	1001 mbar
Test location	Ottawa	Relative humidity	67.6 %

7.2.3 Notes

None

Report reference ID: REP066025 Page 17 of 36

Testing data

Continuous RF electromagnetic field disturbances EN 55035:2017/A11:2020 and CISPR 35:2016

7.2.4 Setup details

 Table 7.2-2: Continuous RF electromagnetic field disturbances, equipment list [2015 assessment]

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002532	1 year	Sept. 16/15
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	Aug. 29/15
Starprobe (0.1–6000 MHz)	AR	FL7006	FA002054	1 year	June 5/15
Laser probe interface	AR	FI7000	FA002054	_	NCR
Directional coupler (80–1000 MHz)	AR	DC6180	FA001659	1 year	July 9/15
Power meter	Rhode & Schwarz	NRP	FA002485	1 year	June 5/15
Power sensor	Rhode & Schwarz	NRP-Z91	FA002488	1 year	June 5/15
Signal generator	Rhode & Schwarz	SMB100A	FA002174	1 year	Mar. 06/15
Amplifier (80–1000 MHz, 250 W)	AR	250W1000A	FA002088	_	NCR

Notes: NCR - no calibration required

Table 7.2-3: Continuous RF electromagnetic field disturbances, equipment list [2024 assessment]

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 18, 2025
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	May 16, 2025
Starprobe (2 MHz–40 GHz)	AR	FL7040	FA002592	1 year	April 23, 2025
Laser probe interface (monitor)	AR	FL7000	FA002593	_	NCR
Power meter	Rohde & Schwarz	NRP	FA002485	1 year	May 16, 2025
Power sensor	Rohde & Schwarz	NRP-Z91	FA002488	1 year	May 24, 2025
Amplifier (1-6 GHz, 100 W)	Ametek	CBA-6G-100D	FA003390	_	NCR
50 Ω coax cable	Carlisle	WHU18-1818-072	FA002391	1 year	October 18, 2025
50 Ω coax cable	Huber+Suhner	104B11NX2/11000	FA003441	1 year	October 18, 2025

Notes: NCR - no calibration required

All equipment related to the contribution of measurement has been included in this list. Such items include, but are not limited to, cables, attenuators, directional couplers, and pre-amps.

Table 7.2-4: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-3 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-3, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

 Table 7.2-5: Continuous RF electromagnetic field disturbances, software details [2015 assessment]

Manufacturer of Software	Details
Rhode & Schwarz	EMC32, Software for EMC Measurements, Version 8.53.0

 Table 7.2-6: Continuous RF electromagnetic field disturbances, software details [2024 assessment]

Manufacturer of Software	Details
Rhode & Schwarz	EMC32, Software for EMC Measurements, Version 11.20.00

Report reference ID: REP066025 Page 18 of 36

Testing data

Continuous RF electromagnetic field disturbances EN 55035:2017/A11:2020 and CISPR 35:2016

7.2.5 Test data

Table 7.2-7: Swept frequency - Continuous RF electromagnetic field disturbances, results [2015 assessment]

Step size increment	1 %¹
Dwell time	5 s ²

Antenna polarization Vertical and Horizontal

Modulation CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave

EUT setup configuration Table top

Transmit antenna 3 meters from EUT, 1.5 meters above GRP

EUT power input during test 100-240 V_{AC}, 50/60 Hz

EUT position facing antenna Front side, back side, left side and right side

Frequency ran	ge, MHz	Test level, V/m ¹	Comments
80	1000	3	No degradation

Notes:

¹Recognizing that a 1% step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4% of the previous frequency with a test level of twice the value of the specified test level in order to reduce the testing time for equipment requiring testing in multiple configurations and/or long cycle times.

²The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

Table 7.2-8: Spot frequencies - Continuous RF electromagnetic field disturbances, results [2024 assessment]

Dwell time	30 s ¹	
Antenna polarization	Vertical and Horizontal	
Modulation	CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave	
EUT setup configuration	Table top	
Transmit antenna	3 meters from EUT, 1.5 meters above GRP	
EUT power input during test	100-240 V _{AC} , 50/60 Hz	
EUT position facing antenna	Front side, back side, left side and right side	
Frequency MHz	Test level V/m Comments	

Frequency, MHz	Test level, V/m	Comments
1800	3	No degradation
2600	3	No degradation
3500	3	No degradation
5000	3	No degradation

Notes:

Report reference ID: REP066025 Page 19 of 36

¹The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

7.2.6 Setup photos

Figure 7.2-1: Continuous RF electromagnetic field disturbances, setup photo (swept test)

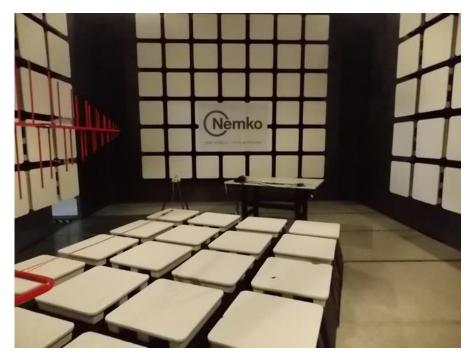


Figure 7.2-2: Continuous RF electromagnetic field disturbances, setup photo (swept test)

Report reference ID: REP066025 Page 20 of 36

Setup photos, continued

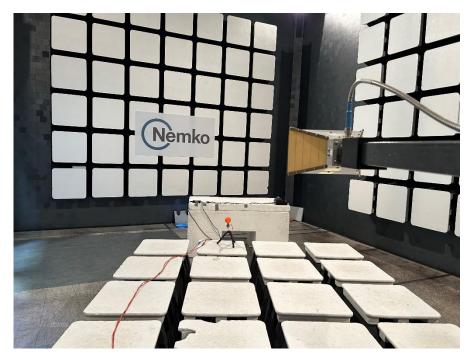


Figure 7.2-3: Continuous RF electromagnetic field disturbances, setup photo (spot test) [2024 assessment]

Figure 7.2-4: Continuous RF electromagnetic field disturbances, setup photo (spot test) [2024 assessment]

Report reference ID: REP066025 Page 21 of 36

Testing data

Electrical fast transients/burst

EN 55035:2017/A11:2020 and CISPR 35:2016

7.3 Electrical fast transients/burst

7.3.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN/IEC 61000-4-4:2012

Table 7.3-1: Electrical fast transients/burst specification

Test specification	Performance criterion
Analogue/digital data ports 1 and 2	
±0.5 kV (peak), 5/50 Tr/Th ns, 5 kHz (repetition rate)	В
AC mains power ports	
±1 kV (peak), 5/50 Tr/Th ns, 5 kHz (repetition rate)	В

Notes:

- ¹Applicable only to ports which, according to the manufacturer's specification, supports cable lengths greater than 3 m.
- ² For CPE xDSL ports repetition frequency is 100 kHz
- If the EUT contained several ports with the same particular interface, only one was tested
- Multi-conductor cables shall be tested as a single cable. Cables shall not be split or divided into groups of conductors for this test.

7.3.2 Test summary

Verdict	Pass		
Test date	January 8, 2015	Temperature	24.4 °C
Tested by	Daniel Hynes	Air pressure	1015.1 mbar
Test location	Montreal	Relative humidity	36.6 %

7.3.3 Notes

None

Testing data

Electrical fast transients/burst

EN 55035:2017/A11:2020 and CISPR 35:2016

7.3.4 Setup details

Table 7.3-2: Electrical fast transients/burst equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Surge/EFT generator	TESEQ	NSG 3060	FA002495	1 year	Oct. 9/15
Surge/EFT coupler/decoupler	TESEQ	NSG 3063	FA002497	1 year	Oct. 9/15
Capacitive coupling clamp	TESEQ	CDN 3425	FA002498	1 year	NCR

Notes:

NCR - no calibration required

Table 7.3-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-4 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-4, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.3-4: Fast transients test software details

Manufacturer of Software	Details
Teseq	NSG300, Version 1.2.0

Report reference ID: REP066025 Page 23 of 36

Testing data

Electrical fast transients/burst

EN 55035:2017/A11:2020 and CISPR 35:2016

7.3.5 Test data

Table 7.3-5: Electrical fast transients/burst results

Wave shape (Tr / Td)	5/50 ns (Tr = rise time, Td= duration time)
Burst duration	15 ms @ 5 kHz repetition frequency
Burst period	300 ms
Test duration	60 s
EUT power input during test	100-240 V _{AC} , 50/60 Hz

Test port	Test voltage (±kV)	Comments
AC input ¹	0.5, 1	No degradation
USB port ³	0.5	No degradation
Serial port ³	0.5	No degradation

Notes:

7.3.6 Setup photos

Figure 7.3-1: Electrical fast transients/burst setup photo

Report reference ID: REP066025 Page 24 of 36

¹Transient applied asynchronous (relation to power supply)

²The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

³The test voltage was applied via capacitive coupling clamp

Testing data Surges

Specification EN 55035:2017/A11:2020 and CISPR 35:2016

7.4 Surges

7.4.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN 61000-4-5:2006
- IEC 61000-4-5:2005

Table 7.4-1: Surges specification

Test specification	Performance criterion
AC mains power ports	
±1 kV (line to line), 1.2/50 (8/20) Tr/Th μs	D
±2 kV (line to ground), 1.2/50 (8/20) Tr/Th μs	В
Notes: None	

7.4.2 Test summary

Verdict	Pass		
Test date	January 8, 2015	Temperature	24.4 °C
Tested by	Daniel Hynes	Air pressure	1015.1 mbar
Test location	Montreal	Relative humidity	36.6 %

7.4.3 Notes

None

7.4.4 Setup details

Table 7.4-2: Surges equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Surge/EFT generator	TESEQ	NSG 3060	FA002495	1 year	Oct. 9/15
Surge/EFT coupler/decoupler	TESEQ	NSG 3063	FA002497	1 year	Oct. 9/15

Notes: Nor

Table 7.4-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-5 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-5, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.4-4: Surges test software details

Manufacturer of Software	Details
Teseq	NSG300, Version 1.2.0

Report reference ID: REP066025 Page 25 of 36

Section 7 Test name

Testing data Surges

Specification EN 55035:2017/A11:2020 and CISPR 35:2016

7.4.5 Test data

Table 7.4-5: Surges at AC mains power results

Open circuit voltage (T₁ / T₂) $1.2/50 \mu s$ (T₁ = front time, T₂= time to half value) Short circuit curent (T_1 / T_2) $8/20 \mu s$ (T₁ = front time, T₂= time to half value) Surge pulse interval 30 s

Number of pulses 5 positive and 5 negative EUT power input during test 100-240 V_{AC}, 50/60 Hz

Test port	Coupling	Test voltage (±kV)	Comments
	Phase to Neutral ^{1 and 3}	0.5, 1	No degradation
AC Input	Phase to ground ^{2 and 3}	0.5, 1, 2	No degradation
	Neutral to ground ^{2 and 3}	0.5, 1, 2	No degradation

Notes:

 $^1\text{Surge}$ applied with generator output impedance set to 2 Ω $^2\text{Surge}$ applied with generator output impedance set to 12 Ω $^3\text{Surge}$ applied synchronous (relation to power supply): 90 and 270°

Report reference ID: REP066025 Page 26 of 36

Section 7 Testing data Test name

Surges

Specification EN 55035:2017/A11:2020 and CISPR 35:2016

7.4.6 Setup photos

Figure 7.4-1: Surges setup photo

Testing data

Continuous induced RF disturbances EN 55035:2017/A11:2020 and CISPR 35:2016

7.5 Continuous induced RF disturbances

7.5.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN 61000-4-6:2009
- IEC 61000-4-6:2008

Table 7.5-1: Continuous induced RF disturbances specification

Test specification	Performance criterion
Analogue/digital data ports ¹	
0.15–10 MHz, 3 V _{RMS} (unmodulated), 80 % AM (1 kHz)	
10–30 MHz, 3 to 1 V_{RMS} (unmodulated), 80 % AM (1 kHz)	A
30–80 MHz, 1 V_{RMS} (unmodulated), 80 % AM (1 kHz)	
AC mains power ports	
0.15–10 MHz, 3 V _{RMS} (unmodulated), 80 % AM (1 kHz)	
10–30 MHz, 3 to 1 V_{RMS} (unmodulated), 80 % AM (1 kHz)	A
30–80 MHz, 1 V_{RMS} (unmodulated), 80 % AM (1 kHz)	

Notes: ¹Applicable only to ports which, according to the manufacturer's specification, supports cable lengths greater than 3 m.

- If d.c. power is fed on conductors included in a signal cable, then the requirements of Signal ports and telecommunication ports only apply to this cable.
- Multi-conductor cables shall be tested as a single cable. Cables shall not be split or divided into groups of conductors for this test.

7.5.2 Test summary

Verdict	Pass		
Test date	January 9, 2015	Temperature	24 °C
Tested by	Daniel Hynes	Air pressure	1000 mbar
Test location	Montreal	Relative humidity	35.6 %

7.5.3 Notes

None

Report reference ID: REP066025 Page 28 of 36

Testing data

Continuous induced RF disturbances EN 55035:2017/A11:2020 and CISPR 35:2016

7.5.4 Setup details

Table 7.5-2: Continuous induced RF disturbances equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Amplifier	AR	150A220	FA001744	_	NCR
Signal generator	Rhode & Schwarz	SMC100A	FA002483	1 year	May 22/15
6 dB attenuator	Inmet	2N200W-06	FA002482	1 year	July 10/15
CDN-M3	FCC	FCC-801-M3-16	FA001776	1 year	June 5/15
CDN-M3	FCC	FCC-801-M3-16A	FA002065	1 year	July 14/15
EM injection clamp	FCC	F-2031-23MM	FA002491	1 year	June 9/15
Directional coupler (0.01–250 MHz)	AR	DC2600A	FA001856	1 year	July 9/15
Power meter	Rhode & Schwarz	NRP	FA002485	1 year	June 5/15
Power sensor	Rhode & Schwarz	NRP-Z91	FA002488	1 year	June 5/15

Notes:

NCR - no calibration required

Table 7.5-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-6 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-6, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.5-4: Continuous induced RF disturbances test software details

Manufacturer of Software	Details
Rhode & Schwarz	EMC32, Software for EMC Measurements, Version 8.53.0

7.5.5 Test data

Table 7.5-5: Continuous induced RF disturbances results

Doute investigated	Countingmothed	FO O tormination point	Commonto
Modulation	CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave		
EUT power input during test	100-240 V _{AC} , 50/60 Hz		
Dwell time	5 s ²		
Step size increment	1 %1		
Signal level ¹	3 V _{RMS}		
Frequency range	0.15-80 MHz		

Ports investigated	Coupling method	50 Ω termination point	Comments
AC input	CDN-M3	CDN-M3 (AM Mains on Support Laptop)	No degradation
USB port	EM Clamp	CDN-M3 (AM Mains of EUT)	No degradation
Serial port	EM Clamp	CDN-M3 (AM Mains of EUT)	No degradation

Notes:

¹Recognizing that a 1% step size is preferred, the frequency range can be swept incrementally with a step size not exceeding 4% of the previous frequency with a test level of twice the value of the specified test level in order to reduce the testing time for equipment requiring testing in multiple configurations and/or long cycle times.

²The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time shall not exceed 5 seconds at each of the frequencies during the scan. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

Report reference ID: REP066025 Page 29 of 36

7.5.6 Setup photos

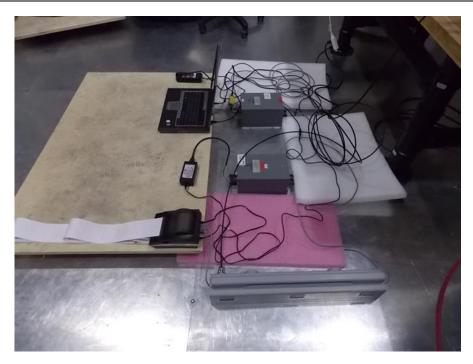


Figure 7.5-1: Continuous induced RF disturbances setup photo

Testing data

Voltage dips and voltage interruptions EN 55035:2017/A11:2020 and CISPR 35:2016

7.6 Voltage dips and voltage interruptions

7.6.1 References and limits

- EN 55035:2017/A11:2020
- CISPR 35:2016
- EN/IEC 61000-4-11:2004

Table 7.6-1: Voltage dips and voltage interruptions specification

Test specification	Performance criterion	
Input AC power ports (including equipment marketed with a separate a.c./d.c power converter)		
< 5 % residual voltage, 0.5 cycles (Voltage dip)	D	
70 % residual voltage, 25 cycles (Voltage dip)		
< 5 % residual voltage, 250 cycles (Voltage interruption)		
Notes: Changes to occur at 0 degree crossover point of the voltage waveform. If the EUT does not demonstrate compliance when tested with 0 degree switching, the test		

Changes to occur at 0 degree crossover point of the voltage waveform. If the EUT does not demonstrate compliance when tested with 0 degree switching, the te shall be repeated with the switching occurring at both 90 degrees and 270 degrees. If the EUT satisfies these alternative requirements, then it fulfils the requirements.

7.6.2 Test summary

Verdict	Pass		
Test date	January 8, 2015	Temperature	24.4 °C
Tested by	Daniel Hynes	Air pressure	1015.1 mbar
Test location	Montreal	Relative humidity	36.6 %

7.6.3 Notes

None

7.6.4 Setup details

Table 7.6-2: Voltage dips and voltage interruptions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Three phase power system	TESEQ	ProfLine 2115-400	FA002516	1 year	May 7/15
AL I					

Notes: None

Table 7.6-3: Measurement uncertainty

Measurement uncertainty (MU) considerations

Measurement uncertainty requirements for EN/IEC 61000-4-11 are currently under consideration, and no applicable requirements have been established at this time. The test equipment is calibrated to meet the tolerance requirements of EN/IEC 61000-4-11, with calibration uncertainty taken into account. (Tolerances are not reduced by MU)

Table 7.6-4: Voltage dips and voltage interruptions test software details

Manufacturer of Software	Details
TESEQ	WIN2110SII, P/N CIC924, Version 2.2.0.8, July 15, 2010

Report reference ID: REP066025 Page 31 of 36

Testing data

Voltage dips and voltage interruptions EN 55035:2017/A11:2020 and CISPR 35:2016

7.6.5 Test data

Table 7.6-5: Voltage dips results

Variation/dip repetition	Sequence of three dips/interruptions with an interval of 10 seconds between each test
Voltage change degree of the voltage waveform	0 and 180
EUT power input during test	230 V _{AC} , 50 Hz

Test port	Voltage reduction (%)	Cycles	Comments
AC Mains input of AC/DC adapter	100	0.5	No degradation
Ac ivialis lilput of Ac/ DC adapter	30	25	No degradation

Notes: Changes occurred at the 0 crossings of the voltage waveform

Table 7.6-6: Voltage interruptions results

Tost port	Voltage reduction (9/)	Cycles	Comments
EUT power input during test	230 V _{AC} , 50 Hz		
Voltage change degree of the voltage waveform	0 and 180		
Variation/dip repetition	Sequence of three dips/interruptions with an interval of 10 seconds between each test		

Test port Voltage reduction (%) Cycles Comments

AC Mains input of AC/DC adapter 100 250 EUT power cycled

Notes: Changes occurred at the 0 crossings of the voltage waveform

7.6.6 Setup photo

Figure 7.6-1: Voltage dips and voltage interruptions setup photo

Report reference ID: REP066025 Page 32 of 36

Section 8 EUT photos

8.1 External photos

Figure 8.1-1: Front view photo

Figure 8.1-2: Rear view photo

External photos, continued

Figure 8.1-3: Side view photo

Figure 8.1-4: Side view photo

External photos, continued

Figure 8.1-5: Top view photo

Figure 8.1-6: Bottom view photo

Report reference ID: REP066025 Page 35 of 36

External photos, continued

Figure 8.1-7: Paper holder view photos

End of the test report